首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   48篇
  国内免费   43篇
化学   434篇
力学   16篇
物理学   78篇
  2023年   10篇
  2022年   16篇
  2021年   17篇
  2020年   36篇
  2019年   8篇
  2018年   27篇
  2017年   27篇
  2016年   24篇
  2015年   21篇
  2014年   25篇
  2013年   80篇
  2012年   28篇
  2011年   27篇
  2010年   14篇
  2009年   21篇
  2008年   18篇
  2007年   15篇
  2006年   8篇
  2005年   7篇
  2004年   9篇
  2003年   9篇
  2002年   4篇
  2001年   8篇
  2000年   6篇
  1999年   20篇
  1998年   14篇
  1997年   1篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   5篇
  1992年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有528条查询结果,搜索用时 31 毫秒
1.
The adsorption of particles to air–aqueous interfaces is vital in many applications, such as mineral flotation and the stabilization of food foams. The forces in the system determine whether a particle will attach to an air–aqueous interface. The forces between a particle and an air–aqueous interface are influenced by Derjaguin–Landau–Verwey–Overbeek forces (i.e. van der Waals and electrostatic forces), non–Derjaguin–Landau–Verwey–Overbeek forces (e.g. hydrophobic, hydrodynamic, structural, and capillary forces), liquid drainage, and liquid flow. As an air–aqueous interface can be deformed by a particle, the forces measured between an air–aqueous interface and a particle can differ from those measured between two hard surfaces separated by liquid. The presence of a film at an air–aqueous interface can also change the forces.  相似文献   
2.
Microencapsulated phase change materials (MePCMs) using melamine–formaldehyde resin/SiO2 as shell were investigated in this paper. Organically modified SiO2 particles were employed to stabilize Pickering emulsion, and in situ polymerization of melamine and formaldehyde was carried out to form hybrid shell. The performances of resultant MePCMs with hybrid shell were investigated comparatively with the MePCMs with polymer shell. SiO2 particles raise the microencapsulation efficiency by improving the stability of emulsion and providing a precipitation site for melamine–formaldehyde resin. Also, the mechanical strength, thermal reliability, and anti‐osmosis performance of MePCMs were improved significantly by SiO2 particles in the shell. Our study shows that Pickering emulsion is a simple and robust template for MePCMs with polymer‐inorganic hybrid shell. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
3.
Most of the commonly used microgels (MGs) are hydrophilic and tend to form oil-in-water emulsions. In this review, we discuss the function of MGs at the droplet interface in order to stabilize water-in-oil (w/o) emulsions. This topic addresses both interesting questions in fundamental research and a significant impact for applications, where the w/o emulsion type is of essential importance. Promising approaches to stabilize w/o emulsions with MGs are highlighted from different perspectives, ranging from novel MG modifications to assisted co-stabilization by adding soft or hard particles. We summarize the accumulated knowledge, evaluate the challenges and solutions, and highlight future research trends.  相似文献   
4.
In this review, we discuss the application of cellulose nanoparticles as a sustainable and cost-effective source of green stabilizers for formulation of foodstuff. Fibrillar cellulose nanocrystal and nanofibril stabilize Pickering systems because of their ability to adsorb at the oil/water interfaces, forming protective layers. They also form associative structures in the continuous phase, increasing their viscoelastic properties and preventing flocculation. We describe the chemical and structural features of nanocelluloses and discuss the principles that support their utilization as stabilizers, especially in the context of recent prospects in food and health domains, given safety and regulatory advances. In addition, we describe the benefits of combining nanocelluloses with other food ingredients to extend their functional attributes. Particularly, nanocellulose-based Pickering emulsions are used to create edible soft materials with multiple functionalities. This article is expected to stimulate the use of nanocelluloses as functional ingredients to create food products with improved performance and novel properties.  相似文献   
5.
Porous polymeric monoliths with densities as low as ≈0.060 g cm−3 are prepared in a gel‐emulsion template way, of which the stabilizer employed is a newly discovered acidified aramid fiber that is so efficient that 0.05% (w/v, accounts for continuous phase) is enough to gel the system. The porous monoliths as obtained can be dried at ambient conditions, avoiding energy‐consuming processes. Importantly, the monoliths show selective adsorption to HCHO, and the corresponding adsorption capacity ( M6 ) is ≈2700 mg g−1, the best result that is reported until now. More importantly, the monoliths can be reused after drying.  相似文献   
6.
In this paper, effect of emulsification processes on the properties of Pickering emulsions stabilized by organomontmorillonites (OMts) was studied. Results of micro-morphology and X-ray diffraction showed that the structure of OMt in emulsion depended on the emulsification processes and had an effect on the stability of emulsion. We propose a schematic diagram to reveal the relationship between emulsification processes-OMt laminates structure-stability of Pickering emulsion. In emulsion prepared by ultrasonic, OMt showed uniform dispersion, loose structure, and irregular crystalline. In emulsion prepared by vortex mixing method, OMt illustrated stacking and coagulation structure. In emulsion prepared by microwave method, OMt showed interacting structure and had a little interaction with oil/water interface, and thus the properties of emulsion prepared by microwave was weakly related to oil/water ratios. Emulsification processes had a profound effect on the structure of OMt and stability of Pickering emulsion, which can be used as a trigger to prepare emulsion for various applications.  相似文献   
7.
Recently, many cosmetic researchers have been focused on multiple emulsions due to better performance. Limited application of multiple emulsions has been attributed to their instability, which can be resolved by the presence of liquid crystals. Multiple emulsions containing liquid crystals are affected by various formulation parameters, such as liquid oils. In this paper, the influence of liquid oils on the formation mechanism was studied. Besides, stability, small-angle x-ray scattering (SAXS) spectra analysis, and rheological analysis of the emulsions were investigated as well. The results showed that when the gap of the polarity between inner oils and external liquid oils is greater, the multiple structures were more easily formed. Multiple emulsions containing liquid crystals were superior in stability to multiple emulsions prepared in the same way with liquid oils that did not form liquid crystals. SAXS indicated that the liquid crystal orientation was lamellar. Rheological analysis indicated that the different structure emulsions showed shear-thinning behavior. The presence of liquid crystal decreased the viscosity and resulted in pseudoplastic enhancement. Both the storage modulus (G′) and the loss modulus (G″) of multiple emulsions were slightly higher than those of O/W-type emulsions, implying the existence of multiple structures.  相似文献   
8.
In presented research, multiple W/O/W emulsions were developed by using experimental design method. A 24-1 fractional factorial design was performed by varying the following input parameters: primary polymeric emulsifier (PEG 30-dipolyhydroxystearate) concentration (0.8% and 2.4%), secondary polymeric emulsifier (Poloxamer 407) concentration (0.8% and 1.2%), electrolyte magnesium sulfate heptahydrate (0.08% and 0.4%) and electrolyte sodium chloride (0.08% and 0.4%). Multiple emulsions were prepared by a two-step emulsification process. Obtained emulsions were characterized with rheological measurements, conductivity and centrifugation tests. Factorial analysis revealed that the concentration of the primary emulsifier was the predominant factor influencing the phase separation, conductivity and maximal apparent viscosity. Additionally, electrolyte magnesium sulfate heptahydrate was more efficient in stabilizing these systems, compared to sodium chloride. The applied fractional factorial design method enabled determination of the optimal concentrations of the primary and secondary emulsifier, as well as the concentration of electrolytes, in order to obtain W/O/W emulsions with desired maximal apparent viscosities, low values of conductivity and without phase separation after centrifugation.  相似文献   
9.
Latex emulsions depend strongly on the polymer composition, and particle size distribution, which in turn, is a function of the preparation of the latex and on the formulation and composition variables. This study reports measurements of particle size and particle size distribution of latex emulsions as function of the reaction time and the type and concentration of emulsifier by using the multiwavelength spectroscopy technique. Results show changes in the particle size of latex emulsions with the reaction time, obtaining larger particles and broader distributions with increasing of Tween 80 ratio. The steric stabilization provides the sole nonionic emulsifier is not enough to protect the polymer particle, causing the flocculation among the interactive particles, resulting in unstable latex. However, latex emulsions prepared with Tween 80 ratio <70 wt.% can stabilize efficiently the nucleated particles, probably due to the effects provided by both, the electrostatic and steric stabilization mechanisms. The same effect is shown in the curves of conversion (%) as a function of reaction time, resulting in slower polymerization rate for Tween 80 ratio >70 wt.%. On the other hand, smaller polymer particles, in all range of emulsifier mixture, have been obtained to higher emulsifier concentration.  相似文献   
10.
A drug nanocrystals self-stabilized Pickering emulsion (NSSPE) with a unique composition and microstructure has been proven to significantly increase the bioavailability of poorly soluble drugs. This study aimed to develop a new solid NSSPE of puerarin preserving the original microstructure of NSSPE by spray-drying. A series of water-soluble solid carriers were compared and then Box-Behnken design was used to optimize the parameters of spray-drying. The drug release and stability of the optimized solid NSSPE in vitro were also investigated. The results showed that hydroxypropyl-β-cyclodextrin (HP-β-CD), rather than solid carriers commonly used in solidification of traditional Pickering emulsions, was suitable for the solid NSSPE to retain the original appearance and size of emulsion droplets after reconstitution. The amount of HP-β-CD had more influences on the solid NSSPE than the feed rate and the inlet air temperature. Fluorescence microscopy, confocal laser scanning microscopy and scanning electron microscopy showed that the reconstituted emulsion of the solid NSSPE prepared with HP-β-CD had the same core-shell structure with a core of oil and a shell of puerarin nanocrystals as the liquid NSSPE. The particle size of puerarin nanocrystal sand interfacial adsorption rate also did not change significantly. The cumulative amount of released puerarin from the solid NSSPE had no significant difference compared with the liquid NSSPE, which were both significantly higher than that of puerarin crude material. The solid NSSPE was stable for 3 months under the accelerated condition of 75% relative humidity and 40 °C. Thus, it is possible todevelop the solid NSSPE preserving the unique microstructure and the superior properties in vitro of the liquid NSSPE for poorly soluble drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号